Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain

نویسندگان

  • Anu Jose Mattam
  • Arindam Kuila
  • Niranjan Suralikerimath
  • Nettem Choudary
  • Peddy V. C. Rao
  • Harshad Ravindra Velankar
چکیده

BACKGROUND Lignocellulosic ethanol production involves major steps such as thermochemical pretreatment of biomass, enzymatic hydrolysis of pre-treated biomass and the fermentation of released sugars into ethanol. At least two different organisms are conventionally utilized for producing cellulolytic enzymes and for ethanol production through fermentation, whereas in the present study a single yeast isolate with the capacity to simultaneously produce cellulases and xylanases and ferment the released sugars into ethanol and xylitol has been described. RESULTS A yeast strain isolated from soil samples and identified as Candida tropicalis MTCC 25057 expressed cellulases and xylanases over a wide range of temperatures (32 and 42 °C) and in the presence of different cellulosic substrates [carboxymethylcellulose and wheat straw (WS)]. The studies indicated that the cultivation of yeast at 42 °C in pre-treated hydrolysate containing 0.5 % WS resulted in proportional expression of cellulases (exoglucanases and endoglucanases) at concentrations of 114.1 and 97.8 U g(-1) ds, respectively. A high xylanase activity (689.3 U g(-1) ds) was also exhibited by the yeast under similar growth conditions. Maximum expression of cellulolytic enzymes by the yeast occurred within 24 h of incubation. Of the sugars released from biomass after pretreatment, 49 g L(-1) xylose was aerobically converted into 15.8 g L(-1) of xylitol. In addition, 25.4 g L(-1) glucose released after the enzymatic hydrolysis of biomass was fermented by the same yeast to obtain an ethanol titer of 7.3 g L(-1). CONCLUSIONS During the present study, a new strain of C. tropicalis was isolated and found to have potential for consolidated bioprocessing (CBP) applications. The strain could grow in a wide range of process conditions (temperature, pH) and in the presence of lignocellulosic inhibitors such as furfural, HMF and acetic acid. The new yeast produced cellulolytic enzymes over a wide temperature range and in the presence of various cellulosic substrates. The cellulolytic enzymes produced by the yeast were effectively used for the hydrolysis of pretreated biomass. The released sugars, xylose and glucose were, respectively, converted into xylitol and ethanol. The potential shown by the new inhibitor tolerant cellulolytic C. tropicalis to produce ethanol or xylitol is of great industrial significance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob

BACKGROUND For economical bioethanol production from lignocellulosic materials, the major technical challenges to lower the production cost are as follows: (1) The microorganism should use efficiently all glucose and xylose in the lignocellulose hydrolysate. (2) The microorganism should have high tolerance to the inhibitors present in the lignocellulose hydrolysate. The aim of the present work ...

متن کامل

Enhanced Xylitol Production from Statistically Optimized Fermentation of Cotton Stalk Hydrolysate by Immobilized Candida tropicalis

Cotton (Gossypium hirsutum), which is one of the most abundant crops in the world, is cultivated widely in China, the United States, and Central Asia. The cotton stalk generated with cotton cultivation is an important source of lignocellulosic biomass. In recent years, cotton stalk has received increasing attention from researchers engaged in bioconversion areas, and some high-value products, s...

متن کامل

Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis

Xylose reductase (XR) is the first enzyme in D: -xylose metabolism, catalyzing the reduction of D: -xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in i...

متن کامل

Evaluation of the Simultaneous Production of Xylitol and Ethanol from Sisal Fiber

Recent years have seen an increase in the use of lignocellulosic materials in the development of bioproducts. Because sisal fiber is a low cost raw material and is readily available, this work aimed to evaluate its hemicellulose fraction for the simultaneous production of xylitol and ethanol. The sisal fiber presented a higher hemicellulose content than other frequently-employed biomasses, such...

متن کامل

Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis.

Xylose reductase (XR) is a key enzyme in D-xylose metabolism, catalyzing the reduction of D-xylose to xylitol. An NADH-preferring XR was purified to homogeneity from Candida parapsilosis KFCC-10875, and the xyl1 gene encoding a 324-amino-acid polypeptide with a molecular mass of 36,629 Da was subsequently isolated using internal amino acid sequences and 5' and 3' rapid amplification of cDNA end...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016